Tänk på modellfunktionen
y = α + β x, {\ displaystyle y = \ alpha + \ beta x,}
som beskriver en linje med lutning P- och y-skärning α. I allmänhet kanske en sådan relation inte exakt gäller för den i stort sett obemärkta populationen av värden för de oberoende och beroende variablerna; vi kallar de obemärkta avvikelserna från ovanstående ekvation för felen. Antag att vi observerar n datapar och kallar dem {(xi, yi), i = 1, …, n}. Vi kan beskriva det underliggande förhållandet mellan yi och xi som involverar denna felterm εi med
y i = α + β x i + ε i. {\ displaystyle y_ {i} = \ alpha + \ beta x_ {i} + \ varepsilon _ {i}.}
Detta förhållande mellan de sanna (men obemärkta) underliggande parametrarna α och β och datapunkterna kallas en linjär regressionsmodell.
ε ^ i = yi – α – β xi. {\ displaystyle {\ widehat {\ varepsilon}} _ {i} = y_ {i} – \ alpha – \ beta x_ {i}.} Hitta min α, β Q (α, β), för Q (α, β ) = ∑ i = 1 n ε ^ i 2 = ∑ i = 1 n (yi – α – β xi) 2. {\ displaystyle {\ text {Find}} \ min _ {\ alpha, \, \ beta} Q (\ alpha, \ beta), \ quad {\ text {for}} Q (\ alpha, \ beta) = \ summa _ {i = 1} ^ {n} {\ widehat {\ varepsilon}} _ {i} ^ {\, 2} = \ sum _ {i = 1} ^ {n} (y_ {i} – \ alpha – \ beta x_ {i}) ^ {2} \.} α ^ = y ¯ – (β ^ x ¯), β ^ = ∑ i = 1 n (xi – x ¯) (yi – y ¯) ∑ i = 1 n (xi – x ¯) 2 = sx, ysx 2 = rxysysx. {\ textstyle {\ begin {align} {\ widehat {\ alpha}} & = {\ bar {y}} – ({\ widehat {\ beta}} \, { \ bar {x}}), \\ {\ widehat {\ beta}} & = {\ frac {\ sum _ {i = 1} ^ {n} (x_ { i} – {\ bar {x}}) (y_ {i} – {\ bar {y}})} {\ sum _ {i = 1} ^ {n} (x_ {i} – {\ bar {x }}) ^ {2}}} \\ & = {\ frac {s_ {x, y}} {s_ {x} ^ {2}}} \\ & = r_ {xy} {\ frac {s_ {y}} {s_ {x}}}. \\\ slutet {justerad}}}
Här har vi introducerat
Ersätter ovanstående uttryck för α ^ {\ displaystyle {\ widehat {\ alpha}}} och β ^ {\ displaystyle {\ widehat {\ beta}}} i
f = α ^ + β ^ x, {\ displaystyle f = {\ widehat {\ alpha}} + {\ widehat {\ beta}} x,}
ger
f – y ¯ sy = rxyx – x ¯ sx. {\ displaystyle {\ frac {f – {\ bar {y}}} {s_ {y}}} = r_ {xy} {\ frac {x – {\ bar {x}}} {s_ {x}}} .}
Detta visar att rxy är lutningen på regressionslinjen för de standardiserade datapunkterna (och att denna linje passerar genom ursprunget).
Generalisering av x ¯ {\ displaystyle {\ bar { x}}} notering, vi kan skriva ett horisontellt fält över ett uttryck för att ange det genomsnittliga värdet för det uttrycket över uppsättningen prover. Till exempel:
x y ¯ = 1 n ∑ i = 1 n x i y i. {\ displaystyle {\ overline {xy}} = {\ frac {1} {n}} \ sum _ {i = 1} ^ {n} x_ {i} y_ {i}.}
Denna notation tillåter oss en kortfattad formel för rxy:
rxy = xy ¯ – x ¯ y ¯ (x 2 ¯ – x ¯ 2) (y 2 ¯ – y ¯ 2). {\ displaystyle r_ {xy} = {\ frac {{\ overline {xy}} – {\ bar {x}} {\ bar {y}}} {\ sqrt {\ left ({\ overline {x ^ {2 }}} – {\ bar {x}} ^ {2} \ höger) \ vänster ({\ överlinje {y ^ {2}}} – {\ bar {y}} ^ {2} \ höger)}}} .}
Bestämningskoefficienten (”R kvadrat”) är lika med rxy 2 {\ displaystyle r_ {xy} ^ {2}} när modellen är linjär med en enda oberoende variabel. Se exempelkorrelationskoefficient för ytterligare detaljer.
Intuitiv förklaring Redigera
β ^ = ∑ i = 1 n (xi – x ¯) (yi – y ¯) ∑ i = 1 n (xi – x ¯) 2 = ∑ i = 1 n (xi – x ¯) 2 ∗ (yi – y ¯) (xi – x ¯) ∑ i = 1 n (xi – x ¯) 2 {\ displaystyle {\ begin {inriktad} {\ widehat {\ beta}} & = {\ frac {\ sum _ {i = 1} ^ {n} (x_ {i} – {\ bar {x}} ) (y_ {i} – {\ bar {y}})} {\ sum _ {i = 1} ^ {n} (x_ {i} – {\ bar {x}}) ^ {2}}} = {\ frac {\ sum _ {i = 1} ^ {n} (x_ {i} – {\ bar {x}}) ^ {2} * {\ frac {(y_ {i} – {\ bar {y }})} {(x_ {i} – {\ bar {x}})}}} {\ sum _ {i = 1} ^ {n} (x_ {i} – {\ bar {x}}) ^ {2}}} \\\ slut {align}}} α ^ = y ¯ – β ^ x ¯, {\ displaystyle {\ begin {align} {\ widehat {\ alpha}} & = {\ bar {y}} – {\ widehat {\ beta}} \, {\ bar {x}}, \\\ slutet {justerad}}}
Enkel linjär regression utan avlyssningsbegreppet (enkel regressor) Redigera
Ibland är det lämpligt att tvinga regressionslinjen att passera genom ursprunget, eftersom x och y antas vara proportionella.För modellen utan avlyssningsterm, y = βx, förenklar OLS-uppskattaren för β till
β ^ = ∑ i = 1 nxiyi ∑ i = 1 nxi 2 = xy ¯ x 2 ¯ {\ displaystyle {\ widehat { \ beta}} = {\ frac {\ sum _ {i = 1} ^ {n} x_ {i} y_ {i}} {\ sum _ {i = 1} ^ {n} x_ {i} ^ {2 }}} = {\ frac {\ overline {xy}} {\ overline {x ^ {2}}}}}
Att ersätta (x – h, y – k) i stället för (x, y) ger regression genom (h, k):
β ^ = (x – h) (y – k) ¯ (x – h) 2 ¯ = xy ¯ – kx ¯ – hy ¯ + hkx 2 ¯ – 2 hx ¯ + h 2 = xy ¯ – x ¯ y ¯ + (x ¯ – h) (y ¯ – k) x 2 ¯ – x ¯ 2 + (x ¯ – h) 2 = Cov (x, y) + (x ¯ – h) (y ¯ – k) Var (x) + (x ¯ – h) 2, {\ displaystyle {\ begin {aligned} {\ widehat {\ beta}} & = {\ frac {\ overline {(xh) (yk)}} {\ overline {(xh) ^ {2}}}} \\ & = {\ frac {{\ overline {xy}} – k {\ bar {x}} – h {\ bar {y}} + hk} {{\ overline {x ^ {2}}} – 2h {\ bar {x} } + h ^ {2}}} \\ & = {\ frac {{\ overline {xy}} – {\ bar {x}} {\ bar {y}} + ({\ bar {x}} – h) ({\ bar {y}} – k)} {{\ overline {x ^ {2} }} – {\ bar {x}} ^ {2} + ({\ bar {x}} – h) ^ {2}}} \\ & = {\ frac {\ operatorname {Cov} (x, y) + ({\ bar {x}} – h) ({\ bar {y}} – k)} {\ operatorname {Var} (x) + ({\ bar { x}} – h) ^ {2}}}, \ slut {justerad}}}
där Cov och Var hänvisar till samvarianten och variansen i provdata (okorrigerad för förspänning).
Den sista formen ovan visar hur flyttning av linjen från datapunkternas masscentrum påverkar lutningen.